BACKGROUND INFORMATION

OUR EXPERIMENT:

In our experiment we used 3 different types of light:			Figure 3:
			Left) and
1. Far Red Light (800 nm)			
2. Close Red Light/Red Film w/ White Light (700-635)			Close
3. White Light			ed Light

HYPOTHESIS:
If we place the mutation of Landsberg Erecta Phytochrome B in red light, it will not etiolation like the wild type, meaning the mutation's leaves will be larger and the stem will be shorter.

PROCEDURE:

Figure 6: close red light ($700-635 \mathrm{~nm}$)(white light with red film)
Planting containers with jiffy pods of wildtype and

mutant seeds

Figure 5: far red light (800 nm) setup with planting containers and jiffy pods with wildtype and mutant seeds

Experimental Design: Wavelengths of Light (White Light with Red Film, Red Light and White Light) Dependent Variables:

- stem length (mm)
- leaf area (cm squared)
measured using Image
Controls.
Controls:
- amount/type of water
- fertilizer
- amount of light

Figure 4: White Light Planting containers with jiffy pods of wildtype and mutant seeds

Effect of the Mutation PhyB in Landsberg Erecta By: Emmie S., Ammarah H., Salmah A.

Figure 9: Shows difference in leaf area of wild type \& mutant in both white and near red light.

Figure 11: Shows stem length difference between wild type \& mutant in white light.

Average Length of Stem Grown in Far Red Light (mm)

Day of Experiment
Figure 10: Shows the average stem length of the plants in far red light

RESULTS

-In the close red light setup, the stem growth was onger on the wild type but the leaf area was smaller in comparison to the mutant.
-Both plants in far red light were unable to grow, as we expected

- In White Light, the wild type stems were longer than the mutant, but not significantly. Also, the leaf area was larger.

Figure 13: Red Film mutant (left) and wild type (right)

Figure 14: White Light mutant (right) and wild type (left)

CONCLUSIONS

- Our experiment tested the effects different wavelengths of light have on the growth of Landsberg Erecta and mutation phy-5 in Phytochrome B.
- In Far Red Light: both the mutant and wild type were unable to grow as expected, and died.
- In Near Red Light phy-5 does not etiolate whereas Landsberg Erecta does. The p-values is smaller than our chosen significance level, so there is enough evidence at the . 05 significance level to conclude that there is a statistically ignificant difference between the means
significa light: the Landsberg Erectans. In white light: the Landsberg Erecta grew more, but there is not much difference. The p -value is larger than our chosen significance level, so there is not sufficient evidence to suggest that the means are not the same. However, this doesn't matter as we predicted that there wouldn't be much difference.

- Design Errors:

While measuring, we exposed the red light plants to white light temporarily which could have altered our data.

BIBLIOGRAPHY

"PolyAllele Detail." TAIR - About Arabidopsis, TAIR 7 Feb 2007, www.arabidopsis.org/servlets/TairObject?id=115308\&type

 =polyallele.TAIR. "Locus Detail." Arabidopsis.org, 30 Nov. 2015, www.arabidopsis.Igserver airljectid=26548\&type=locus. Accessed 27 Sept. 2018

Britannica, The Editors of Encyclopaedia. "Chlorophyll." Encyclopædia Britannica, Encyclopedia Britannica, Inc., 6 Fb 2018, www.britannica.com/science/chlorophyll.

